Ensemble algorithms
SimulationBasedInference.EnIS
— TypeEnIS
Basic ensemble importance sampling (EnIS) inference algorithm. Also sometimes referred to as the "particle batch smoother" (PBS) or "generalized likelihood uncertainty estimation" (GLUE) depending on the context.
SimulationBasedInference.EKS
— TypeEKS <: EnsembleInferenceAlgorithm
Represents a proxy for the Ensemble Kalman Sampler (Garbuno-Inigo et al. 2020) implementation provided by EnsembleKalmanProcesses
.
SimulationBasedInference.ESMDA
— TypeESMDA <: EnsembleInferenceAlgorithm
Implementation of the ensemble-smother multiple data assimilation algorithm of Emerick et al. 2013.
Emerick, Alexandre A., and Albert C. Reynolds. "Ensemble smoother with multiple data assimilation." Computers & Geosciences 55 (2013): 3-15.
Ensemble utility methods
SimulationBasedInference.get_ensemble
— Methodget_ensemble(sol::SimulatorInferenceSolution{<:EnsembleInferenceAlgorithm}, iter::Int=-1)
Fetches the state of the ensemble from the given solution object. For iterative algorithms, the optinal argument iter
may be provided, which then retrieves the ensemble at the given iteration.
SimulationBasedInference.get_transformed_ensemble
— Methodget_transformed_ensemble(sol::SimulatorInferenceSolution{<:EnsembleInferenceAlgorithm}, iter::Int=-1)
Fetches the transformed ensemble from the given solution object. For iterative algorithms, the optinal argument iter
may be provided, which then retrieves the ensemble at the given iteration.
SimulationBasedInference.get_observables
— Methodget_observables(sol::SimulatorInferenceSolution{<:EnsembleInferenceAlgorithm}, iter::Int=-1)
Returns a NamedTuple
of concatenated observables at iteration iter
.
SimulationBasedInference.ensemble_solve
— Methodensemble_solve(
ens::AbstractMatrix,
initial_prob::SciMLBase.AbstractSciMLProblem,
ensalg::SciMLBase.BasicEnsembleAlgorithm,
dealg::Union{Nothing,SciMLBase.AbstractSciMLAlgorithm},
param_map;
iter::Integer=1,
prob_func,
output_func,
pred_func,
solve_kwargs...
)
Performs a single step/iteration for the given ensemble and returns a named tuple (; pred, sol)
where sol
are the full ensemble forward solutions and pred
is the prediction matrix produced by pred_func
.